AOJ 1191 - Rotate and Rewrite

解法

こういう問題に対する典型的な発想として、一文字ずつ構成していく、というものがある。
つまり、A の先頭位置と B の先頭位置を決めうった後、一文字ずつ作っていって、A, B それぞれをちょうど使い切れたら、それが答えの候補になる。

このために dp をする。dp は2段階からなる。

先に2段階目の dp を考える。A, B の先頭位置を s1, s2 と決めうつと、

 dp[i][j] := A[s1..s1+i), B[s2...s2+j) を使い切って一致させるときの最大長

となる。求めたい答えは dp[n][m] である。
遷移式は、各 l1, l2 に対して

 もし A[s1+i...s1+i+l1) と b[s2+j...s2+j+l2) を使い切って同じ文字にできるなら
 dp[i + l1][j + l2] = max(dp[i + l1][j + l2], dp[i][j] + 1)

となる。条件部分を判定するために、別の dp が必要。
これは A, B のどちらについても同じなので、A だけ考えると

 can_make[l][r][k] := A[l..r) を使い切って値 k に一致させられるか?

である。これを求めるために補助テーブル

 r_dp[l][r][i][j] := A[l..r) まで使い切って、書き換えルール i の j 文字目まで一致させられるか?

を同時に作っていく。これによって、遷移は

 ある k があって、r_dp[l][k][i][j - 1] かつ A[k..r) を使い切ってルール i の j 文字目にできるならば
 r_dp[l][r][i][j] = true

とかける。この後、r_dp の更新を can_make に伝搬させるため

 書き換えルール i について、A[l..r) から x1, ..., xk をすべて作れたら
 can_make[l][r][y] = true

と更新する。
更にその後、can_make の更新を r_dp に伝搬させるため、

 書き換えルール i の一文字目が A[l..r) を使い切って作れるなら
 r_dp[l][r][i][1] = true

と更新する。
これを r - l の小さい方からやっていくと求まる。
あとは can_make を使って最初の dp を行えば解ける。

計算量は O(n^3m^3 * 30 + (n^3 + m^3)r*10) ぐらいでヤバ過ぎるが、適当に枝刈りを入れると 2sec ぐらいで通った。
critical な枝刈り部分はソースコードのコメントに書いた。

ソースコード

#include <bits/stdc++.h>
using namespace std;

template<typename T>
std::vector<T> table(int n, T v) { return std::vector<T>(n, v); }

template <class... Args>
auto table(int n, Args... args) {
    auto val = table(args...);
    return std::vector<decltype(val)>(n, std::move(val));
}

constexpr int max_a = 30;
constexpr int max_k = 10;

auto calc_can_make(vector<int> const& a, vector<vector<int>> const& xs, vector<int> const& ys) {
    const int n = a.size() / 2, r_sz = xs.size();
    auto can_make = table(a.size(), a.size(), max_a + 1, false);
    // r_dp[i][j][k][l] := can match a[i..j) with xs[k][0..l) ?
    auto r_dp = table(a.size(), a.size(), r_sz, max_k + 1, false);
    for(int i = 0; i + 1 < n * 2; ++i) {
        can_make[i][i + 1][a[i]] = true;
    }
    for(int i = 0; i < n; ++i) {
        for(int j = 0; j < r_sz; ++j) {
            r_dp[i][i][j][0] = true;
        }
    }
    for(int len = 1; len <= n; ++len) {
        for(int l = 0; l + len < 2 * n; ++l) {
            const int r = l + len;
            for(int i = 0; i < r_sz; ++i) {
                for(int j = 1; j <= (int)xs[i].size(); ++j) {
                    for(int k = l; k < r; ++k) {
                        if(r_dp[l][k][i][j - 1] && can_make[k][r][xs[i][j - 1]]) {
                            r_dp[l][r][i][j] = true;
                        }
                    }
                }
            }
            for(int i = 0; i < r_sz; ++i) {
                if(r_dp[l][r][i][xs[i].size()]) {
                    can_make[l][r][ys[i]] = true;
                }
            }
            for(int i = 0; i < r_sz; ++i) {
                if(can_make[l][r][xs[i][0]]) {
                    r_dp[l][r][i][1] = true;
                }
            }
        }
    }
    return can_make;
}

int main() {
    int n, m, r;
    while(cin >> n >> m >> r, n) {
        vector<int> a(n * 2), b(m * 2);
        vector<vector<int>> xs(r);
        vector<int> ys(r);
        for(int i = 0; i < n; ++i) {
            cin >> a[i];
            a[i + n] = a[i];
        }
        for(int i = 0; i < m; ++i) {
            cin >> b[i];
            b[i + m] = b[i];
        }
        for(int i = 0; i < r; ++i) {
            int k; cin >> k;
            xs[i].resize(k);
            for(auto& x : xs[i]) cin >> x;
            cin >> ys[i];
        }

        auto can_make_a = calc_can_make(a, xs, ys);
        auto can_make_b = calc_can_make(b, xs, ys);
        int ans = -1;
        for(int s1 = 0; s1 < n; ++s1) {
            for(int s2 = 0; s2 < m; ++s2) {
                vector<vector<int>> dp(n + 1, vector<int>(m + 1, -1));
                dp[0][0] = 0;
                for(int i = 0; i < n; ++i) {
                    for(int j = 0; j < m; ++j) {
                        if(dp[i][j] == -1) continue;
                        for(int k = 1; k <= 30; ++k) {
                            for(int l1 = 1; l1 <= n - i; ++l1) {
                                if(!can_make_a[s1 + i][s1 + i + l1][k]) continue; // critical
                                for(int l2 = 1; l2 <= m - j; ++l2) {
                                    if(can_make_a[s1 + i][s1 + i + l1][k] && can_make_b[s2 + j][s2 + j + l2][k]) {
                                        dp[i + l1][j + l2] = max(dp[i + l1][j + l2], dp[i][j] + 1);
                                    }
                                }
                            }
                        }
                    }
                }
                ans = max(ans, dp[n][m]);
            }
        }

        cout << ans << endl;
    }
}

感想

いわれてみれば確かになあという感じなんだけど全く見えなかった。
やりたいことのゴールから逆算していくと見えるのかなあ。一生解ける気がしない。
あとオーダーヤバスギ(国内予選だからまあ良いんだろうけど…)。

AOJ 1158 - ICPC: Intelligent Congruent Partition of Chocolate

解法

\(_{36}C_{18}\) は流石に間に合わない。
しかし、2つの領域を合同かつ連結になるように選んでいけば、探索空間はそんなに大きくないように思える(実際大きくない)。
なので、今探索中の領域1に連結なチョコレートを付け加えたときに、領域2にも対応する位置のチョコレートを使うと確定させるような探索が良さそう。
そのためにまず、領域2が領域1に対してどれだけ回転しているか&裏返しかを決めておく。
このもとで、一番左上のチョコレートを領域1として使うと確定させ、そのチョコレートが領域2においてどこに対応するかを全部試す。
すると、チョコレートを領域1に付け加えたとき、それが領域2のどこに対応するかがわかるようになる。
領域1にチョコレートを付け加えるときに、連結になるようにしておけば自動的に領域2も連結になるのでOK。
途中でバッティングしたり範囲外に出たりせず全部使い切れれば YES とすればよい。

ソースコード

#include <bits/stdc++.h>
using namespace std;

using ll = long long;

constexpr int dy[4] = {0, 1, 0, -1};
constexpr int dx[4] = {1, 0, -1, 0};

int main() {
    int w, h;
    while(cin >> w >> h, w) {
        vector<vector<int>> r(h, vector<int>(w)), idx(h, vector<int>(w, -1));
        vector<int> xs, ys;
        for(int i = 0; i < h; ++i) {
            for(int j = 0; j < w; ++j) {
                cin >> r[i][j];
                if(r[i][j] == 1) {
                    idx[i][j] = ys.size();
                    ys.push_back(i);
                    xs.push_back(j);
                }
            }
        }
        const int n = xs.size();
        if(n & 1) {
            cout << "NO" << endl;
            continue;
        }

        auto in_range = [&] (int y, int x) {
            return 0 <= y && y < h && 0 <= x && x < w;
        };
        auto calc_dy = [] (int mir, int rot, int s_dy, int s_dx) {
            if(rot == 0)      return s_dy;
            else if(rot == 1) return (mir ? -s_dx : s_dx);
            else if(rot == 2) return -s_dy;
            else              return (mir ? s_dx : -s_dx);
        };
        auto calc_dx = [] (int mir, int rot, int s_dy, int s_dx) {
            if(rot == 0)      return (mir ? -s_dx : s_dx);
            else if(rot == 1) return s_dy;
            else if(rot == 2) return (mir ? s_dx : -s_dx);
            else              return -s_dy;
        };

        auto solve = [&] () {
            for(int j = 1; j < n; ++j) {
                for(int rot = 0; rot < 4; ++rot) {
                    for(int mir = 0; mir < 2; ++mir) {
                        unordered_set<ll> vis;
                        stack<pair<ll, ll>> st;
                        vis.insert(1);
                        st.emplace(1, 1LL << j);
                        while(!st.empty()) {
                            const ll used1 = st.top().first, used2 = st.top().second;
                            if(__builtin_popcountll(used1) * 2 == n) {
                                return true;
                            }
                            st.pop();
                            for(int k = 0; k < n; ++k) {
                                if(!(used1 & (1LL << k))) continue;
                                for(int d = 0; d < 4; ++d) {
                                    const int ny1 = ys[k] + dy[d], nx1 = xs[k] + dx[d];
                                    const int ny2 = ys[j] + calc_dy(mir, rot, ny1 - ys[0], nx1 - xs[0]);
                                    const int nx2 = xs[j] + calc_dx(mir, rot, ny1 - ys[0], nx1 - xs[0]);
                                    if(!in_range(ny1, nx1) || idx[ny1][nx1] == -1) continue;
                                    if(!in_range(ny2, nx2) || idx[ny2][nx2] == -1) continue;
                                    const int id1 = idx[ny1][nx1], id2 = idx[ny2][nx2];
                                    if((used1 | used2) & (1LL << id1) || (used1 | used2) & (1LL << id2) || id1 == id2) continue;
                                    if(vis.count(used1 | (1LL << id1))) continue;
                                    vis.insert(used1 | (1LL << id1));
                                    st.emplace(used1 | (1LL << id1), used2 | (1LL << id2));
                                }
                            }
                        }
                    }
                }
            }
            return false;
        };

        cout << (solve() ? "YES" : "NO") << endl;
    }
}

感想

国内予選ならではって感じの問題だった。

AOJ 2682 - Polygon Guards

解法

答えは 9 以下なので全探索で間に合う(えぇ…)。
前処理で、ある点に配置したときにどこが見えるようになるかを bit で管理すると判定が O(1) になる。
視線の線分が多角形内部に全部入っているかどうかの判定は適当にやるとハマる。
まず、その線分と多角形の交点を全部求める。
線分の両端から線分の内側にちょっと進んだところが多角形の内部にあるかをまず判定。
交点については、線分の方向ベクトルの2方向にちょっと進んだところが多角形内部にあるかで判定。
この2つをすべてクリアした場合のみ、その点が見える。

AOJ でも 2sec ぐらいかかったので本番で出たらもうちょっと高速化しないとダメかも。

ソースコード

#include <bits/stdc++.h>
using namespace std;

// ライブラリ部分は省略

int dfs(polygon const& ps, int i, ll cur_vis, ll used, vector<ll> const& vis) {
    const int n = ps.size();
    if(cur_vis == (1LL << n) - 1) return __builtin_popcountll(used);
    if(i == n) return 9;
    int res = dfs(ps, i + 1, cur_vis, used, vis);
    if(__builtin_popcountll(used) < 8) {
        res = min(res, dfs(ps, i + 1, cur_vis | vis[i], used | (1LL << i), vis));
    }
    return res;
}

int main() {
    int n; cin >> n;
    polygon ps(n);
    for(int i = 0; i < n; ++i) {
        int x, y; cin >> x >> y;
        ps[i] = point(x, y);
    }

    vector<ll> vis(n);
    for(int i = 0; i < n; ++i) {
        vis[i] = 1LL << i;
        for(int j = 0; j < n; ++j) {
            if(i == j) continue;
            segment s(ps[i], ps[j]);
            bool check = true;
            for(int k = 0; k < n; ++k) {
                segment t(ps[k], ps[(k + 1) % n]);
                if(!isis_ss(s, t)) continue;
                const auto delta = (ps[j] - ps[i]) / abs(ps[i] - ps[j]) * 0.001;
                for(auto p : is_ss(s, t)) {
                    if(abs(s.a - p) > eps && abs(s.b - p) > eps) {
                        check &= is_in_polygon(ps, p + delta) != 2 && is_in_polygon(ps, p - delta) != 2;
                    }
                }
                check &= is_in_polygon(ps, ps[i] + delta) != 2;
                check &= is_in_polygon(ps, ps[j] - delta) != 2;
            }
            if(check) {
                vis[i] |= 1LL << j;
            }
        }
    }

    cout << dfs(ps, 0, 0, 0, vis) << endl;
}

感想

この問題みたいな多角形だと、n / 4 以下でできることが示せるらしい。
一般の多角形なら n / 3 とのこと。
たしかに多角形を三角形 or 四角形で分割することを考えるとそんな気もする。

AOJ 2724 - Laser Cutter

解法

結論を言えば、最小重み二部マッチングに帰着できる。

線分の交点と端点が頂点になった有向グラフを考えると、考えるべき問題は「いくつか辺を追加することで、最小重みのオイラーグラフを作る」になる。
辺を追加するとしたら、線分の端点同士(終点 -> 始点) を考えるだけで良い。
実際、端点以外での交点は、入次数と出次数が等しくなるようにしかならないためである。
したがって、端点同士でマッチングを取れば良いことがわかる。
(一応言っておくと、交点を経由するのは回り道でしかないのでありえない。)

最小重み二部マッチングは最小費用流やハンガリアン法で解けて、O(N^3logN) か O(N^3) となる。
最小費用流で解くときは、重みが整数値じゃないので、ポテンシャルの判定式に eps をつけないとバグるから気をつけること。

ソースコード

#include <bits/stdc++.h>
using namespace std;

using pii = pair<int, int>;
constexpr double eps = 1e-10;

struct edge {
    int to, rev, cap;
    double cost;
    edge(int t, int c, double ct, int r) : to(t), rev(r), cap(c), cost(ct) {}
};
using graph = vector<vector<edge>>;

void add_edge(graph& g, int from, int to, int cap, double cost) {
    g[from].emplace_back(to, cap, cost, g[to].size());
    g[to].emplace_back(from, 0, -cost, g[from].size() - 1);
}

double min_cost_flow(graph& g, int s, int t, int f) {
    using P = pair<double, int>;
    const double inf = 1e18;
    double res = 0;
    vector<double > h(g.size()), dist(g.size());
    vector<int> prevv(g.size()), preve(g.size());
    while(f > 0) {
        priority_queue<P, vector<P>, greater<>> que;
        fill(begin(dist), end(dist), inf);
        dist[s] = 0;
        que.emplace(0, s);
        while(!que.empty()) {
            const auto cur_d = que.top().first;
            const int v = que.top().second;
            que.pop();
            if(dist[v] < cur_d) continue;
            for(int i = 0; i < (int)g[v].size(); ++i) {
                auto& e = g[v][i];
                if(e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to] + eps) {
                    dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
                    prevv[e.to] = v;
                    preve[e.to] = i;
                    que.emplace(dist[e.to], e.to);
                }
            }
        }
        if(dist[t] == inf) return -1;
        for(int v = 0; v < (int)g.size(); ++v) {
            h[v] += dist[v];
        }

        auto d = f;
        for(int v = t; v != s; v = prevv[v]) {
            d = min(d, g[prevv[v]][preve[v]].cap);
        }
        f -= d;
        res += d * h[t];
        for(int v = t; v != s; v = prevv[v]) {
            auto& e = g[prevv[v]][preve[v]];
            e.cap -= d;
            g[v][e.rev].cap += d;
        }
    }
    return res;
}

int main() {
    int n; cin >> n;
    int ix, iy; cin >> ix >> iy;
    vector<int> sx(n), sy(n), gx(n), gy(n);
    for(int i = 0; i < n; ++i) {
        cin >> sx[i] >> sy[i] >> gx[i] >> gy[i];
    }

    double ans = 0;
    for(int i = 0; i < n; ++i) {
        ans += hypot(gx[i] - sx[i], gy[i] - sy[i]);
    }
    graph g(n * 2 + 2);
    const int src = n * 2, sink = n * 2 + 1;
    for(int i = 0; i < n; ++i) {
        for(int j = 0; j < n; ++j) {
            add_edge(g, i, j + n, 1, hypot(sx[j] - gx[i], sy[j] - gy[i]));
        }
        add_edge(g, src, i, 1, 0);
        add_edge(g, i + n, sink, 1, 0);
    }
    ans += min_cost_flow(g, src, sink, n);

    cout << fixed << setprecision(10) << ans << endl;
}

ICPC 模擬国内予選 2019

はじめに

2019/Practice/模擬国内予選 - ACM-ICPC Japanese Alumni Group
の参加記です。

kazuma, nakano と SleepingDragon として出ました。

コンテスト内容

  • A を読む、やるだけなので投げる、WAになる
    • 2回目のケースで1回目のテストケース結果提出してた(は?)
  • C を読む、こういうのは僕は嫌いなので無視
  • D を読む、rotate の位置全探索して編集距離やるだけだと思った
    • 若干バグったけどサンプルが合うので投げる、WA
    • nakano に前消すときは rotate のコスト減るの忘れてない?と指摘される(忘れてた
    • 直しても WA 、絶望
    • 15分~20分程度悩んだ結果、サンプルケースの結果提出してたことに気づく(は???)
    • ICPC は初めてか?肩の力抜けよ
  • よく知らないがこの間に B, C, E が通っていた
  • G は聞いたらやるだけだったので書く
    • バグった
    • 終了1分後にサンプルが合った(テストケース見たけど通ってた、悲しいね

5完で全体 13 位、これで6完できないのはダメだね。
本番じゃなくてよかった(本番だったら普通に予選敗退しそう

反省・感想

  • 謎が発生したらすぐに相談しような
  • サンプルの結果を投げるのをやめろ(提出2回もミスってるの初心者すぎる
  • Heno_World おめでとうございます、想像以上に強かった

AOJ 2691 - Cost Performance Flow

解法

流量1ずつ流していったときの最小費用流のコストのグラフは、下に凸な折れ線グラフになる。
求める値は、このグラフと点 \((M, 0)\) との距離であり、グラフの形からこの距離も下に凸な関数となる。
なので、折れ線の各線分に対して \((M, 0)\) との距離関数を求め、極値を計算する。

今流量を \(f_i\) だけ流しており、その時の最小コストが \(S_i\) であるとする。
この状態から、追加で 1 流すとしたときのコストを \(c_i\) とする。
\(f_i\) の代わりに \(f_i + \Delta ~~(0 \leq \Delta \leq 1)\) 流すとすると、その時のコスパは $$(M - f_i - \Delta)^2 + (S_i + c_i\Delta)^2$$ である。
これを微分して極値を得る \(\Delta\) を求めると $$\Delta = \frac{M - f_i - S_i c_i}{c_i^2 + 1}$$ となる。
これが 0 以上 1 以下なら、候補になる。
これらの候補と折れ線の端点の中で一番小さいコストが求める値である。

ところで、適当に実装すると(有理数部分で)オーバーフローするため、頑張ってオーバーフローしないようにするか、int128 を使ってごまかそう。

ソースコード

#include <bits/stdc++.h>
using namespace std;

using ll = __int128;

// めっちゃ長いのでライブラリ部分は省略

int main() {
    int n, m; cin >> n >> m;
    capacity_weighted_graph<int, int> g(n);
    int s, t; cin >> s >> t;
    s--, t--;
    for(int i = 0; i < m; ++i) {
        int a, b, u, c; cin >> a >> b >> u >> c;
        add_edge(g, a - 1, b - 1, u, c);
    }

    const ll M = [&] { auto tmp = g; return max_flow(tmp, s, t); }();

    rational<ll> ans{M * M, 1};
    auto calc_cost = [&] (ll fi, ll ci, ll ci_sum, rational<ll> delta) {
        const auto a = M - (fi + delta), b = ci_sum + ci * delta;
        return a * a + b * b;
    };
    ll ci_sum = 0;
    for(int i = 0; i < M; ++i) {
        const ll ci = min_cost_flow(g, s, t, 1);
        if(0 <= M - i - ci * ci_sum && M - i - ci * ci_sum <= ci * ci + 1) {
            auto delta = rational<ll>{M - i - ci * ci_sum, ci * ci + 1};
            delta.reduce();
            ans = min(ans, calc_cost(i, ci, ci_sum, delta));
        }
        ci_sum += ci;
        ans = min(ans, calc_cost(i + 1, 0, ci_sum, rational<ll>{0, 1}));
    }

    cout << (long long)ans.numerator() << "/" << (long long)ans.denominator() << endl;
}

感想

オーバーフローが罠すぎる(なんか雑に gcd 取るだけだったらオーバーフローした)。

AOJ 2202 - Canal: Water Going Up and Down

解法

全長が小さいので DP する。

 reach[i][j] := 船 i が位置 j に到達する最短時刻

これはあくまでも「到達」時刻であり、その地点を出発できる時刻ではない(門の上下などで停泊する必要があるため)。
あとはこのテーブルの更新と、出発できる時刻を同時に求めていけばOK。
計算量は O(MK)

ソースコード

#include <bits/stdc++.h>
using namespace std;

constexpr double inf = 1e20;

int main() {
    int n, m, k;
    while(cin >> n >> m >> k, n) {
        const int max_len = n + k + 10;
        vector<double> t1(n), t2(n), V(m);
        vector<int> idx(max_len, -1);
        vector<double> gate_time(n);
        for(int i = 0; i < n; ++i) {
            int X, L, F, D, UD;
            cin >> X >> L >> F >> D >> UD;
            t1[i] = (double)L / D; // east -> west
            t2[i] = (double)L / F; // west -> east
            if(UD == 1) {
                swap(t1[i], t2[i]);
                gate_time[i] = t1[i];
            }
            idx[X] = i;
        }
        for(auto& v : V) cin >> v;

        vector<vector<double>> reach(m, vector<double>(max_len));
        for(int i = 0; i < m; ++i) {
            double cur = 0;
            for(int j = 0; j < max_len; ++j) {
                if(j == 0) {
                    cur = i / V[i];
                } else {
                    cur += 1 / V[i];
                }
                if(i != 0 && j + 1 < max_len) {
                    cur = max(cur, reach[i - 1][j + 1]);
                }
                reach[i][j] = cur;

                if(idx[j] != -1) {
                    const int id = idx[j];
                    const double enter = max(cur, gate_time[id]);
                    cur = enter + t2[id];
                    gate_time[id] = enter + t1[id] + t2[id];
                }
            }
        }

        cout << fixed << setprecision(10) << reach[m - 1][k] << endl;
    }
}

感想

到達時刻と出発可能時刻で式を書き間違えていて破滅した。こういうときに限ってサンプルが全部通るっていうね。